Sélection internationale Session 2015
Ecole Normale Supérieure Paris
Epreuve de culture scientifique - Informatique Duration : 2 hours

For candidates who chose computer science as secondary specialisation

If you cannot answer a question, you may use it as hypothesis to later questions.
Calculators are not allowed.

Exercice 1.

A basic arithmetic expression is composed of characters from the set 1, + and parentheses.
Almost every integer can be represented by more than one basic arithmetic expression. For
example, all of the following basic arithmetic expressions represent the integer 14:

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 41
((1+1) (1+1+1+1+1))+((1+1) (1+1))
(1+1) (1+1+1+1+1+1+1)

(1+1) (((1+1+1) (1+1))+1)

Describe an algorithm to compute, given an integer n as input, the minimum number of 1’s
in a basic arithmetic expression whose value is n. The number of parentheses doesn’t matter,
just the number of 1’s. For example, when n = 14, your algorithm should return 8, for the final
expression above.

Your algorithm should run in time polynomial in n.

Exercice 2.
For this exercise, all arrays are arrays of integers and a sorted array is an array where elements
are in non-decreasing order.

1. Describe an O(n) algorithm which

e takes as input a size n array A and an integer i where A[l..7] is already sorted and
Ali + 1..n] is already sorted, and

e modifies A so the entire array becomes sorted.

Your algorithm must not create any new arrays. (In other words, your algorithm should
be in-place.)

Merge sort is a sorting algorithm which starts from a completely unsorted array and recur-
sively applies your algorithm from 1.

In this question, we will look at a variant of merge sort where before merging, instead of
having two sorted subarrays, the array may be split into many sorted subarrays. A sequence
represents the length of the sorted subarrays.

We wish to update this sequence to reflect what happens when a new subarray is added and
merge sort is applied to some pairs of subarrays. For the remainder of this question, we will
only be concerned with this sequence of lengths (instead of the details of sorting the array).

Consider the following update function on a sequence L of positive integers (representing
length of subarrays).



function UPDATE(L, value)
ADD(L, value)
repeat indefinitely
n <— LENGTH(L)
if n>2and Lin —2] < Lin— 1]+ L[n] and L[n — 2] < L[n] then
MERGE(L,n —2,n — 1)
elseif n > 2 and Lin — 2] < L[n — 1] + L[n] and L[n — 2] > L[n] then
MERGE(L,n — 1,n)
else if n > 2 and L[n — 1] < L[n] then
MERGE(L,n — 1,n)
else
return

1

The above functions uses the following subroutines.

LENGTH(L) returns the number of elements currently in L.

ADD(L, value) adds value to the end of the sequence L.

MERGE(L, 7,7 + 1) replaces elements at index ¢ and 7 + 1 by a single element (at index 1)
that is their sum. For example MERGE(L, 3,4) when L is

0,2,4,6,8
gives

0,2,10,8

since 4 + 6 = 10.
L[i] returns the ith element in the sequence. L[n] is the last element in the sequence and
L[1] is the first element.

2. Describe a data structure that supports

e the LENGTH and ADD operations in O(1) and

e the MERGE operation where we merge the last two elements or the two elements be-
fore the last element in O(1). I.e., the only indices allowed as inputs to MERGE(L, i, i+
1) are i =LENGTH(L) — 1 and ¢ =LENGTH(L) — 2.

3. Show that if we start with an empty sequence, using your data structure, the running
time for applying UPDATE k times is O(k).

4. When the update function returns, the following is true (if L has enough elements left):

e Lin—1]> L[n]
e Lin—2]> Lin—1]+ L[n]

Show that if both

o L[i—1] > L[]
o L[i—2 > Lli — 1] + L[]

for all 7 then the first element of L has value exponential in the length of the sequence L.



5. Show that starting from an empty sequence, there is a set of calls to UPDATE (and no
other function) so that it is not true that

o L[i—1] > Ll
o L[i—2 > Lli — 1] + L[]

for all 7 at the end of these calls.

6. Show that if UPDATE is changed to MODIFIEDUPDATE so that

o L[i—1] > Ll
o L[i—2 > Lli — 1] + L[]

is true for both ¢ = n and ¢ = n—1 at the end of every MODIFIEDUPDATE operation then
starting from an empty sequence, after any number of calls to MODIFIEDUPDATE (and
no other functions),

is true for all 7.



